A Belief Network Approach to Optimization and Parameter Estimation in Resource and Environmental Management Models
نویسنده
چکیده
This study presents an approach to use Bayesian belief networks in various optimization tasks in resource and environmental management. A belief network is constructed to work parallel to a deterministic model, and it is used to update conditional probabilities associated with different components of the model. The propagation of probabilistic information occurs in two directions in the network. The divergence between prior and posterior probability distributions at model components can be used as indication on inconsistency between model structure, parameter values, and other information used. An iteration scheme was developed to force prior and posterior distributions to become equal. This removes inconsistencies between different sources of information. The scheme can be used in different optimization tasks including parameter estimation and optimization between various management alternatives. Also multiobjective optimization is possible. The approach is illustrated with two numerical examples and with a hypothetical example on cost-effective management of river water quality.
منابع مشابه
Volumetric soil moisture estimation using Sentinel 1 and 2 satellite images
Surface soil moisture is an important variable that plays a crucial role in the management of water and soil resources. Estimating this parameter is one of the important applications of remote sensing. One of the remote sensing techniques for precise estimation of this parameter is data-driven models. In this study, volumetric soil moisture content was estimated using data-driven models, suppor...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملGreen Supply Chain Risk Network Management and Performance Analysis: Bayesian Belief Network Modeling
With the increase in environmental awareness, competitions and government policies, implementation of green supply chain management activities to sustain production and conserve resources is becoming more necessary for different organizations. However, it is difficult to successfully implement green supply chain (GSC) activities because of the risks involved. These risks alongside their resourc...
متن کاملSimulation of groundwater quality parameters using ANN and ANN+PSO models (Case study: Ramhormoz Plain)
One of the main aims of water resource planners and managers is to estimate and predict the parameters of groundwater quality so that they can make managerial decisions. In this regard, there have many models developed, proposing better management in order to maintain water quality. Most of these models require input parameters that are either hardly available or time-consuming and expensive to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016